NOVEL TRANSFORMATIONS WITH BORONTRIFLUORIDE ETHERATE/IODIDE ION : FACILE CONVERSION OF 2-KETOOXIRANES AND 2-BROMD-2-ENONES TO THE α, β -UNSATURATED CARBONYL COMPOUNDS.

Arun K. Mandal[®] and S.W. Mahajan, Alchemie Research Centre, P.O.Box 155, Thane-Belapur Road, Thane 400 601, Maharashtra, India.

(Received in UK 15 February 1988)

Summary : Borontrifluoride etherate/iodide ion rapidly deoxygenates \propto -ketooxiranes, 3, to the corresponding α, β -unsaturated carbonyl compounds, 4, in near quantitative yields. In contrast, the reaction of 3 with borontrifluoride etherate/bromide ion, 2, yielded the corresponding 2-bromo-2-enone derivatives, 5, in excellent yields. The reagent 1, also dehalogenates a variety of 2-bromo-2-enones, 5, to the corresponding 2-en-1-one derivatives, 4, in high yields.

We have recently reported that a combination of borontrifluoride etherate/halide ions (X=I, <u>1</u>; X=Br, <u>2</u>) performs a number of useful synthetic transformations, e.g., cleavage of alkyl ethers to the halides and alcohols², non-aqueous conversion of acetals and ketals to the carbonyl compounds³, and conversion of activated alcohols to the halides⁴. Vankar <u>et al</u> have also reported independently the deoxygenation of sulfoxides to sulfide⁵ and the selective cleavage of benzyl ethers⁶ with the reagent, <u>1</u>. In continuation of our work, we report herein an efficient deoxygenation of ∞ -ketooxiranes, <u>3</u> (eqn.1) and dehalogenation of 2-bromo-2-enone, <u>5</u> (eqn.2) to the corresponding ∞ , β -unsaturated carbonyl compounds, <u>4</u>, with the reagent, <u>1</u>.

Decxygenation of *C*-ketocxiranes <u>3</u>

Decxygenation of extranes to elefin has been the focus of current interest and a recent review² has listed various reagents that can be employed for this purpose. On the other hand, very few systemic studies have been reported on the decxygenation of \propto -ketoexiranes, 3, to the \propto , β -unsaturated carbonyl compounds, 4. We have now found that a variety of \propto -ketoexiranes 3 can be cleanly converted to the corresponding \propto , β -unsaturated carbonyl compounds 4 with 1 as the decxygenation reagent. The results are summarized in Table 1.

2294

<u>Table - 1</u>	:	DEOXYGENATION OF ∞ -KETOOXIRANES, 3 TO ∞, β -UNSATURATE	D
		CARBONYL COMPOUNDS, 4, BY 1ª	

Entry	Substrate ^b	Reaction Condition	Product ^C	Yiclj ^d , a
		iemp."C iime		
1.		-10, 1 min.	✓ 4ª	85(95)
2.	<u>3a</u> f	-do-	<u>4a</u>	82(94)
3.	<u>3a</u>	-25, 1 min.	<u>4a</u>	83(94)
4.	0 3b	-10, 1 min.	<u> 4b</u>	80(92)
5.	3 <u>c</u>	-do-		75(90)
6.	2 <u>3</u> d	- do -	• <u>↓</u> <u>4</u> σ	81(94)
7.		- do -	<u>√ 48</u>	80(33)
8.	<u>کوبر</u> <u>،</u>	-do-	× <u>4</u>	נאלא5)
9.	H CHO 3g	- do -		80(92)

^a The reactions were carried out using <u>3</u> (10 mmol), $BF_3 \cdot 0 (C_2H_5)_2$ (23 mmol) and NuI (25 mmol) in acetonitrile (25 ml); ^bThe oxiranes were prepared following literature procedures; ^CPurity 95-98% as analysed by GC; ^dIsolated yields by distillation; ^eFigures in parenthesis represent crude isolated yields; ^fTetraethylammonium iodide as the source of iodide ion CH_2Cl_2 as the reaction medium. As can be seen from the Table 1, high yields of the products were obtained in all the cases (entries 1-9) and most remarkably the reaction proceeded rapidly even under mild conditions. Thus, while the reported reactions were carried out at -10° C (ice-salt bath), we have found that the reactions were complete within 1 min even when the temperature was as low as -25° C (entry 3) ! Use of equimolar amounts of 3 and 1 in the reaction produced one-half mole of iodine (as estimated by iodometric titration) and a 1 : 1 mixture of 4 and unreacted 3. With two moles of 1, however, one mole of iodine was liberated with concommitant formation of 4 in near quantitative yields.

It is noteworthy that while the reaction of <u>1</u> with <u>3</u> is facile and yielded <u>4</u> in excellent yields, the reaction of <u>1</u> with oxiranes, such as cyclohexene uxide², and cycloheptene oxide² and 1-phenyl-1-cyclohexene oxide⁸ yielded the corresponding <u>trans</u>-iodohydrin in elmost quantitative yields. In no case, however, were the corresponding olefins detected.

Entry	Substrate	Reaction Time	Product ^b	Yield ^{C,d}
1.	<u>3a</u>	0.5 h	5a Br	85(92)
2.	<u>3a</u> 8	2 h	<u>5a</u>	80(90)
3.	<u>3b</u>	0.5 h		82(92)
4.	<u>3c</u>	5 min.	5 <u>c</u>	75(89)
5.	<u>3d</u>	0.5 h	O Br.OH <u>6</u>	(94)

Table - 2 : REACTION OF CC-KETOOXIRANES, 3, WITH BF3.0(C2H5)2/Br , 2, at 25°C

^aThe reactions were carried out using <u>3</u> (10 mmol), $BF_{3} \cdot O(C_2H_5)_2$ (23 mmol) and tetraethylammonium bromide (25 mmol), in CH_2Cl_2 (25 ml) except entry 2.

^bPurity 93-96%, ^{c,d}See footnotes d, e of Table-1; ⁰NaBr as source of bromide ion in acetonitrile (40 ml).

We have also explored the reaction of 3 with a combination of borontrifluoride etherate and bromide ion, 2 (Table 2). In this case, however, the reaction of <u>3a-d</u> with 2 yielded high amounts of the corresponding 2-bromo-2-enone derivatives <u>5a-d</u> (entries 1-5, Table-2), arising possibly from the acid catalysed dehydration of the intermediate bromohydrin derivatives⁹. Indeed, the bromohydrin $\underline{6}^{10}$ was isolated as the sole product in the case of 3d where dehydration is prevented due to the absence of hydrogen at the 2-position. It is noteworthy that the bromide ion displays an overwhelming preference for the 2-position, even when this place is storically hindered (entry 5, Table 2). The probable mechanism for the deoxygenation of $\underline{3}$ to $\underline{4}$ is shown in Schumu 1. We speculate that this reaction proceeds through formation of iodo-hydrin $\underline{8}$ via the hydrolysis of the intermediate $\underline{7}$ by the moisture present in the reaction medium (<u>vide</u> - <u>infra</u>). The iodo-hydrin, $\underline{8}$ would then react with $\underline{1}$ to yield the thermodynamically stable encone derivatives $\underline{4}$. This hypothesis is further supported by

our observation that the bromohydrin $\underline{6}^{11}$ reacts instantaneously with a mole of $\underline{1}$ at -10° C to yield the carvone $\underline{4d}$ in quantitative yield.

Dehalogenation of 2-bromo-2-enone, 5.

The reaction of 2-bromo-2-enone, 5, with 1 proceeded smoothly to yield the corresponding 2-en-1-one derivatives, 4, in excellent yields (eqn.2). As before the reaction also proceeds with the concommitant formation of a mole of iodine. The results are summarized in Table 3.

As can be seen from the Table 3, while <u>5b-d</u> reacts rapidly with <u>1</u> to furnish <u>4b-d</u> in quantitative yields, the corresponding reaction with sterically hindered

Entry	Substrate	Reaction Condition Tamp(°C), Time	Product	Yield ^{a,b}
1.	<u>5a</u>	25°,24 h or 82°,2 h	<u>4a</u>	62(73)
2.	<u>5a</u>	85°, 2 h	<u>4a</u>	80(95)
3.	<u>5</u> 6	0°, 5 min	<u>4b</u>	85(97)
4.	<u>5c</u>	-0 °, 5 min	<u>4c</u>	(98)
5.	Br	25°, 0.5 h	R V	(96)
	5d		4 <u>d</u>	

Table 3 : DEHALOGENATION OF 2-BROMO-2-ENONE 5 WITH 1

^aIsolated yield, GC purity 95-98%; ^bFigures in the paranthesis indicated GC yields using an internal standard. ^CThe reaction was carried out in 1,2-dichloroethane using tetrabutyl ammonium iodide and borontrifluoride etherate. substrate <u>5a</u> was slow and required forced condition for completion of the reaction (entries 1,2). This difference in the rate of reaction permitted a selective dehalogenation of <u>5b-c</u> over <u>5a</u> (eqn.3).

The probable mechanism of the above dehalogenation reaction (Scheme-2) appears to involve borontrifluoride assisted 1,4-addition of iodide ion to 5 to yield the dihalo-derivative, 9, which is then hydrolysed to the keto-derivative, 10, by the moisture present in the reaction medium. Subsequent reaction of 10 with 1, as shown in Scheme-2, yielded the 2-en-1-one, 4 with concurrent formation of a mole ... iodine. This is further supported by (i) deuteration studies which showed the incorporation of deuterum in $\frac{4}{20}(50\%)^{12}$ and (ii) 'reaction of 2,3-dibromo-3-methyl-cyclohexan-1-one with 1 which yielded $\frac{40}{20}$ in good yields.

In conclusion, we have shown that a combination of borontrifluoride etherate and iodide ion, $\underline{1}_{,}$ decxygenates under exceptionally mild condition a variety of \propto -keto-oxiranes 3 to the corresponding 2-en-1-one derivatives 4 in quantitative yields. On the other hand the reaction of 3 with a combination of borontrifluoride-etherate and bromide ion, 2 provided, in high yields, the corresponding 2-bromo-2-enone derivatives, 5. Finally, the reaction of 5 with 1 again yielded the dehalogenated products, 4, in excellent yields.

Experimental :

NMR spectra were recorded in CDC1₃ on a Bruker CW-80 and Bruker AC-80 spectrometers, with chemical shift reported in ppm downfield of internal standard tetramethylsilane. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. GLC analyses were carried out on a HP 5890 gas chromatograph using capillary column HP 101 (methyl silicone), 25 m x 0.2 mm x 0.2 Am film thickness. Preparation of ∞ -ketooxiranes, 3:

The ketooxirane <u>3a</u> was prepared following literature procedure¹³. Similarly α -ketooxiranes <u>3b-3e</u> were prepared following essentially the above literature procedure. Compounds <u>3f</u>¹⁴ and <u>3g</u>¹⁵ were prepared following literature procedures. The products were purified by distillation.

<u>3b;</u> b.p 51-53°/0.5 mm of Hg; IR (CHCl₃), ν cm⁻¹; 1710; ¹H nmr, δ , 3.05 (s, 1H, C<u>H</u>-0) 2.50 - 1.50 (<u>m</u>, 6H, 3C<u>H</u>₂), 1.45 (s, 3H, C<u>H</u>₃).

<u>3c</u>; b.p 92-96°/30 mm of Hg; IR (CHCl₃), $\nu \text{ cm}^{-1}$, 1710; ¹H nmr, δ , 3.70-3.50 (<u>m</u>, 1H, 0-C<u>H</u>-C=0), 3.10 - 3.30 (m, 1H, 0-C<u>H</u>-C), 2.80 - 1.48 (<u>m</u>, 6H, 3C<u>H</u>₂).

<u>3d</u>; b.p 72-75°/ 1 mm of Hg; IR (CHCl₃), ν cm⁻¹, 1710; ¹H nmr, δ , 4.87-4.6 (<u>m</u>, 2H, =C<u>H</u>₂), 3.52 - 3.35 (<u>m</u>, 1H, C<u>H</u>-0), 2.95 - 1.80 (<u>m</u>, 5H, 2C<u>H</u>₂, 1 C<u>H</u>), 1.75 (s, 3H, =C-C<u>H</u>₃), 1.45 (s, 3H, C<u>H</u>₃-C-0).

<u>38</u>; b.p 85-86°/30 mm of Hg; IR (CHCl₃), ν cm⁻¹, 1745; ¹H nmr, δ , 3.13 (s, 1H, C<u>H</u>-0), 2.50 - 1.75 (m, 4H, 2C<u>H</u>₂), 1.60 (s, 3H, C<u>H</u>₂).

General procedure for the deoxygenation of ∞ -ketooxiranes, 3 :

To a stirred solution of $\underline{3}$ (10 mmol), sodium iodide (3.75 g, 25 mmol) in acetonitrile (25 ml) at -10°C was added, freshly distilled borontrifluoride etherate (2.9 ml, 23 mmol) <u>via</u> a syringe. After one minute the dark reaction mixture was quenched with 10% aqueous sodium thiosulphate solution. Dichloromethane (50 ml) was added and the organic layer separated, washed with saturated brine solution and dried. Removal of solvent yielded <u>4</u> which was further purified by distillation under vacuum.

General procedure for the preparation of 2-bromo-2-enone, 5:

To a stirred solution of $\underline{3}$ (10 mmol), tetraethyl ammonium bromide (5.78 g, 27.5 mmol) in dry dichloromethane (40 ml) at 25°C was added freshly distilled boron-trifluoride etherate (1.6 ml, 12.5 mmol) <u>via</u> a syringe. Usual work up as before yielded $\underline{5}$, which was further purified by distillation under vacuum.

5a; b.p 90-92°/1 mm of Hg, IR (neat), √ cm⁻¹, 1680, 1610; ¹H nmr, δ , 2.42 (a, 2H, CH₂-C=0), 2.38 (s, 2H, CH₂-C=), 2.15 (s, 3H, CH₃-C=), 1.05 (s, 6H, 2CH₃).

 $\frac{5b}{3}$; Kugelrohr distillation (oven temp. 150°C, vacuum 0.8 mm of Hg); IR (CHCl₃), y cm⁻¹, 1680, 1610; ¹H nmr,δ, 2.70 - 2.30 (<u>m</u>, 4H, C<u>H</u>₂-C≖O, C<u>H</u>₂-C=), 2.15 (d, 3H, J=1.0 Hz, C<u>H</u>₃-), 2.20 - 1.85 (<u>m</u>, 2H, C<u>H</u>₂-).

<u>5c</u> ; m.p 74-76°C; IR (CHCl₃), y cm⁻¹, 1690, 1610; ¹H nmr, δ , 7.42 (t, 1H, J=6.0 Hz, C<u>H</u>-C=), 2.71 - 2.30 (<u>m</u>, 4H, C<u>H</u>₂-C=0, C<u>H</u>₂-C=), 2.25 - 1.90 (<u>m</u>, 2H, C<u>H</u>₂-C-).

<u>5d</u>; Kugelrohr distillation (oven temp. 150°C, vacuum 1 mm of Hg); IR (neat), √cm⁻¹, 1700, 1605; ¹H nmr, &, 7.12 (s, 1H, C<u>H</u>=), 2.66 (dd, 2H, J=9.0 Hz, J=1.0 Hz, -C<u>H</u>2⁻ C=0), 1.90 (dd, 2H, J=8.0 Hz, J=1.0 Hz, C<u>H</u>2~C-), 1.21 (s, 6H, 2C<u>H3</u>).

General procedure for the dehalogenation of 5 to 4:

To a solution of 5 (5 mmol), sodium iodide (2.06 g, 13.75 mmol) in dry acetonitrile (10 ml) at D°C or 25°C was added freshly distilled borontrifluoride etherate (1.6 ml, 12.5 mmol) as before. Usual workup as before /ielded 4 in excellent yields.

Acknowledgement : We thank IEL Limited for financial support. We also thank Drs P Chush and K Srinivasan for stimulating discussions.

References :

- Presented in part at the "IMEBORON VI Meeting", 'Bechyne' Czechoslovakia, June, 1987.
- 2. A.K.Mandal, N.R.Soni and K.R.Ratnam, Synthesis, 274 (1985).
- 3. A.K.Mandal, P.Y.Shrotri and A.D.Ghogare, Synthesis, 221 (1986).
- 4. A.K.Mandal and S.W.Mahajan, <u>Tetrahedron Lett</u>., 3863 (1985).
- 5. Y.D.Vankar and C.T.Rao, *ibid*, 2717 (1985).
- 6. Y.D.Vankar and C.T.Rao, J. Chem. Res. (S), 232 (1985).
- 7. H.N.C.Wong, C.C.M.Fot and T.Wong, Heterocycles, 26, 1345 (1987).
- 8. A.K.Mandal and S.W.Mahajan, Unpublished observations.
- Analysis of the initial reaction mixtures revealed the formation of bromohydrins in addition to 5.
- 10. <u>6</u>; ¹H nmr (CDCl₃); δ, 4.80-4.65 (<u>m</u>, 2H, C<u>H</u>₂=), 4.4-4.27 (<u>m</u>, 1H, C<u>H</u>-0), 3.4-2.0 (<u>m</u>, 6H, 2C<u>H</u>₂, 1C<u>H</u>, 0<u>H</u>), 1.83 (s, 3H, C-C<u>H</u>₃), 1.8-1.6 (<u>m</u>, 3H, C<u>H</u>₃-C=).
- 11. All our attempts to convert 6 to the corresponding iodohydrin failed.
- 12. By comparison of the area of vinyl proton (δ ,5.89) with the area of the methyl proton (δ ,1.94) in the ¹H nmr.
- 13. R.L.Wasson and H.O.House, Org. Syn. Coll. Vol. 4, 552 (1963).
- 14. N.C. Yang and R.A. Finnegan, J. Am. Chem. Soc., 80, 5845 (1958).
- 15. G.B.Payne, J. Org. Chem., 275 (1960).